US ERA ARCHIVE DOCUMENT

Estimating Air Pollution Infiltration Efficiencies for Exposure Assessment and Epidemiology

Ryan Allen, PhD

Faculty of Health Sciences
Simon Fraser University
Burnaby, BC

Overview

- Why estimate residential infiltration efficiencies?
- How?
 - -Tracer
 - -Recursive model
 - Description, validation, examples
- Application to epi
 - -Panel studies
 - -Model building for other study designs
- Windsor results
 - And possible future directions

Infiltration Efficiency (F_{inf})

- The fraction of the ambient concentration that penetrates indoors and remains suspended
- Function of AER, penetration, deposition
- Exposure to ambient pollution depends on F_{inf}
 & time spent outdoors
 - -Total exposure = ambient + nonambient

Ambient PM_{2.5}

Ambient PM_{2.5}

"Leaky"

Why?

- To better interpret epi. results from different locations and/or from different seasons
- Reduce exposure misclassification in epi studies
- To tease apart health impacts of ambient vs. nonambient pollution

Why?

- To better interpret epi. results from different locations and/or from different seasons
- Reduce exposure misclassification in epi studies
- To tease apart health impacts of ambient vs. nonambient pollution

Figure 4. F_{inf} detached model results in the heating season and predicted indoor ambient PM_{2.5} from outdoor ambient concentrations (15 μg/m³).

Why?

- To better interpret epi. results from different locations and/or from different seasons
- Reduce exposure misclassification in epi studies
- To tease apart health impacts of ambient vs. nonambient pollution

How?

- Tracer (most commonly sulfur or sulfate)
 - Requires that there be no (or few) indoor or personal sources
 - -Indoor/outdoor ratio or slope gives F_{inf}
- Recursive model
 - Requires continuous indoor/outdoor measurements (e.g. nephelometer, DustTrak)
 - Does not require absence of indoor sources
 - -Shows promise for estimating F_{inf} of pollutants without good tracers (e.g. ultrafines)

Average
indoor
concentration =
during
the hour

Some fraction of the average *outdoor* + *concentration* during the <u>hour</u>

Some fraction of the *indoor concentration* + that remains from the PREVIOUS hour

Contribution from *indoor* sources during the hour

$$C_t^{in} = \beta_1 C_t^{out} + \beta_2 C_{t-1}^{in} + S_t^{in}$$

$$F_{\text{inf}} = \frac{Pa}{a+k} = \frac{\beta_1}{1-\beta_2}$$

Validation

Validation

Figure 3. Distributions of 1000 estimates of P, k, and F_{inf} at 5% measurement error. True values used in simulations were P = 1.00, $k = 0.25 \, h^{-1}$, and $F_{inf} = 0.75$.

Examples

 Air cleaner effectiveness in woodsmoke and forest fire impacted community

Examples

 Contributions of ambient and nonambient sources at retirement facilities in southern CA

Application of F_{inf} to Epidemiology Panel Studies

- Ambient Levoglucosan
- Ambient Light Absorbing Carbon
- Ambient PM_{2.5}
- ▲ Personal Light Absorbing Carbon
- △ Personal PM_{2.5}
- Ambient-Generated PM_{2.5}
- \square Nonambient PM_{2.5}
- ** p<0.05
 - * p<0.10

Application of F_{inf} to Epidemiology

Model Development for Large Studies

Koenig et al., *EHP.*, 2005

Application of F_{inf} to Epidemiology

Model Development for Large Studies

- Victoria, BC
- Spatial property assessment data (SPAD)
- Model including season predicts 54% of total variance
- Potentially allows
 F_{inf} to be estimated
 in many homes
 without I/O
 monitoring

Table 4. Multiple regression model of F_{inf} during the heating season $(n=44, R^2=0.37)$.

Parameter	Estimate	SE	P-value
Intercept	0.36	0.03	< 0.00
Improved value (>	- median reference)		
<median< td=""><td>0.15</td><td>0.04</td><td>< 0.00</td></median<>	0.15	0.04	< 0.00
Heating (no FHA	reference)		
FHA	0.09	0.04	0.01

Abbreviation: FHA, forced hot air.

Windsor $PM_{2.5}F_{inf}$

Windsor $PM_{2.5}$ F_{inf} Models

Season	Predictor(s)	R ²
Summer	I-O Temp Diff, Window Opening	0.36
Winter	Building age, air cleaner use	0.20

Windsor UFP Finf

Windsor UFP F_{inf} Models

Season	Predictor(s)	R ²
Summer	Outdoor Temp, Window Opening	0.56
Winter		

Other Possibilities for Windsor Data

- Continue development of F_{inf} models
- Comparison of F_{inf} for different PM species
 - $-PM_{2.5}$
 - -UFP
 - -LAC
- Health effects
 - -Ambient / nonambient PM vs. lung function